Jurassic World Toy Review

Just going to go over these fairly quickly of my latest purchases from my local ToysRUs about the new JW toys. This is to help you all to know what’s decent and what’s outright horrible and make some responsible financial decisions on your investment in these toys.anky

1.) Basher/Biters – Some are decent sculpts, some are just overall very crappy. It’s a hit or miss situation. Ones worth getting are the Ankylosaurus and Stegoceratops because we need more herbivores, this line suffers from theropod favoritism though. T. rex is boring and the Spinosaurus is very poor though.

blue2.) Electronics – Kinda reminded me of the JP3 Re-ak-atak assortment that’s been repainted a bazillion times, just with lights added. Scale is the problem here. Like the Dimorphodon won’t scale well if you got other Pterosaurs from JP/TLW/JP3 and even the Pteranodon in the Jurassic World Capture Vehicles assortment. Blue is a bit bigger than the TLW Electronic Raptor. I think these might be worth getting, they are kind of fun.

mosa3.) Capture Vehicles – MEH! I took a chance on these and I’m not satisfied with either one of the ones I got. Frankly I want to return them, but I had to mangle the package to get them out. So fat chance of getting a refund. I regret it, and didn’t really have the money for it, but did it anyways. The humans are tiny and have like 0 articulation to them. The head moves, arms and legs move together as one piece. The paint apps on the humans are complete and total garbage from the looks and are cheap. The Indominus’ Dino Damage is pretty sensitive, and don’t even get me started on the Pteranodon’s dino-damage. It’s a bit twitchy as well. Both vehicles are cheap. Actually, the gyrosphere is beyond cheap, the guy doesn’t even stay seated in it! The disc launcher does shoot surprisingly far though, but looks stupid. The only good thing about that set is the Indominus, but even that’s really cheaply made. If you think “I’ll just use my previous figures with the vehicles.” Hah no. Fat chance. Playability is decent, but everything else about them stinks. I might skip out on the Mosasaur, but that and the “Indominus Rex vs. Gyrosphere” were the only ones I wanted from this assortment. I took a chance on the Pteranodon one when I did it. Just a warning, photos and being in the package these things look good in store. I wouldn’t waste the 20 bucks on them.

chomprex4.) Chomping Rex – For it’s price and size (about the size of the JP3 Ultra Rex/JP Young T.rex) it’s not too bad, the play gimmick is a bit cheap with the mouth. It does not even close all the way and sometimes you have to assist it. It’s a good stand in for the large T.rex coming out this fall though. Personally I’ve had on my desk as a novelty item. I don’t think it’s worth the price though. It’s nice to have a female T.rex with a semi-accurate albeit simplified color scheme to what’s in the films.

5.) Bad Boy/Indominus Rex – This wasn’t so bad. Actually it’s probably the best of the line and I hope the large T.rex is good like this. You can see the coloration change ability in varying light levels, except in direct sunlight. No batteries included, but that’s okay. It’s probably the best money I have spent on a Jurassic Park figure in years with exception to the “Allosaurus Assault” and “Pachyrhinosaurus Clash” Dino Showdown sets of JP2k13, and the large Tyrannosaurus retool of the Bull from TLW from the JP2k9 line.

finalirexGeneral Thoughts: I think this line was over-hyped by the fandom and what not. People said these things are just like the Kenner days and frankly this is inaccurate and that’s an understatement. There’s some hits (electronics weren’t that bad, Large Indominus, two Basher/Biters maybe), but a lot of misses (The Vehicle versus packs especially). The question is up to you if you want to collect all of these or not. It’s changed my philosophy on being a completist when it comes to JP figures. The vehicles are the worst part, the paint apps there are cheap and the molding also is cheap. Those are like the equivalent of cheap dollar store toys, you guys know the type. Save your money, collect the big Indominus, Jada Toys, and the LEGOs.

Overall opinion: Feel free to develop your own here based on your own experiences, I’m just trying to save you some money in the long run. This line isn’t as good as JP/TLW’s lines, in fact it doesn’t even come close. There are some moments where it’s a bit better than JP3’s, but I actually overall will rate this line remarkably low because of how cheaply made it all looks when compared to the previous lines. Really the only high point are the electronic figures. I just did this because of my excitement for there being new merch/toys, which is reasonable. If not feeling somewhat misplaced and underwhelmed at the moment. I will say one thing it did get me back excited for Jurassic World, but the adrenaline rush of new merch does and will run out. Overall, I give this a D+ rating. I don’t rate these very high. JP3 line that we actually got repaints of countless times is bit better than these. I do hope the quality of the toys is not an indicative of the quality of the film.

Work Continuing on the Encyclopedia

Been a long time since we updated the blog about our work here at Jurassic Park Legacy. Rest assured we have all been diligently working on the encyclopedia project and filling it to the brim with all available information. The main thing we’ve been doing is pouring over the material and transcribing what we read and see. Our wealth of knowledge is growing with each entry we put into the encyclopedia and it’s truly remarkable. We’re 99% of the way through the novel-canon, 99% of the way through the film-canon (this is counting Rides, which is Alternate Universe and JP:TG which is nestled into the film-canon at this time), and 75% of the way through the comics (IDW is finished, Topps is being worked on and making good progress. Junior novels are in a preliminary stage still and the Trespasser canon articles still need some work as well. We’re also prepping for Phase 2 at this time of the encyclopedia with Behind the Scenes information as well about the production of the films. Some of those articles have been added or are currently being worked on at this time. The encyclopedia is a good way to learn about all things Jurassic Park and to help the fandom have the ultimate resource for all things Jurassic Park. Be sure to join today to help us out!

“What Everyone Should Know About Paleontology” by Thomas R. Holtz Jr.

While browsing the Dinosaur Mailing List and the various paleoblogs out there recently I stumbled upon this gem of an article by Dr. Thomas Holtz Jr. in regards to what everyone should know about paleontology. I’ve been an aspiring paleontologist for years and it’s nice to see something that could be used a point-by-point done by one of the professionals out there. Personally, he’s one of my favorite paleontologists out there around and actually worked on the Jurassic Park Institute Dinosaur Field Guide a while back. The question was posed by Roberto Takata from the Dinosaur Mailing List. Project Dryptosaurus even posted a copy of this on their site.

“What Should Everyone Know About Paleontology?” 
by Thomas R. Holtz, Jr.

I think that is a good question. What really are the most important elements of paleontology that the general public should understand? I took a shot at coming up with a list of key concepts, based on experiences with teaching paleontology and historical geology and with less-formally structured outreach to the public. I have offered this list (cross posted at the Sauropod Vertebrae Picture of the Week, Dave Hone’s Archosaur Musings, and Superoceras blogs) as a way for it to reach a wider audience. That this is Darwin Week makes it even more appropriate, as we should use this occasion to encourage a better understanding of the changes of Earth and Life through Time for the public at large.
Much as I might like to think otherwise, the specific details of the hindlimb function of Tyrannosaurus rex or the pneumatic features of brachiosaurid vertebrae really are not the most important elements of the field. Understanding and appreciating the nitty gritty details of the phylogeny and anatomy of any particular branch of the Tree of Life are not really necessary for everyone to know, any more than we would regard detailed knowledge of bacterial biochemistry or the partitioning of minerals in a magma chamber to be significant general knowledge. (Indeed, these latter two items are actually far more critical for human society than any specific aspect of paleontology, and so from a certain point of view really more important for people to know than the History of Life.)
That said, all human societies and many individuals have wondered about where we have come from and how the world came to be the way it is. This is, in my opinion, the greatest contribution of paleontology: it gives us the Story of Earth and Life, and especially our own story.
I have divided this list into two sections. The first is a list of general topics of paleontology, touching on the main elements of geology that someone would need to know for fossils to make any sense. The second is the more specific list of key points in the history of life.
(NOTE: as the idea of this list is that it should be aimed at the general public, I have tried to avoid technical terminology where possible.)


  • That rocks are produced by various factors (erosion à sedimentation; metamorphism; volcanic activity; etc.)
  • That rocks did not form at a single moment in time, but instead have been and continue to be generated throughout the history of the planet.
  • That fossils are remains of organisms or traces of their behavior recorded in those rocks.
  • That rocks (and the organisms that made the fossils) can be thousands, millions, or even billions of years old.
  • That the species discovered as fossils, and the communities of organisms at each place and time, are different from the same in the modern world and from each other.
  • That despite these differences that there is continuity between life in the past and life in the present: this continuity is a record of the evolution of life.
  • That we can use fossils, in conjunction with anatomical, molecular, and developmental data of living forms, to reconstruct the evolutionary pattern of life through time.
  • That fossils are incomplete remains of once-living things, and that in order to reconstruct how the organisms that produced them actually lived, we can:
    • Document their anatomy (both gross external and with the use of CT scanning internal), and compare them to the anatomy of living creatures in order to estimate their function;
    • Examine their chemical composition, which can reveal aspects of their biochemistry;
    • Examine their microstructure to estimate patterns of growth;
    • Model their biomechanical functions using computers and other engineering techniques;
    • Investigate their footprints, burrows, and other traces to reveal the motion and other actions of the species while they were alive;
    • And collect information of the various species that lived together in order to reconstruct past communities.
  • However, with all that, fossils are necessarily incomplete, and there will always be information about past life which we might very much want to know, but which has been forever lost. Accepting this is very important when working with paleontology.
  • That environments of the past were different from the present.
  • That there have been episodes of time when major fractions of the living world were extinguished in a very short period of time: such data could not be known without the fossil record.
  • That entire branches of the tree of life have perished (sometimes in these mass extinction events, sometimes more gradually).
  • That certain modes of life (reef formers, fast-swimming marine predators, large-bodied terrestrial browsers, etc.) have been occupied by very different groups of organisms at different periods of Earth History.
  • That every living species, and every living individual, has a common ancestor with all other species and individuals at some point in the History of Life.

Honestly, despite the fact the specific issues about specific parts of the Tree of Life are the ones that paleontologists, the news media, the average citizen, etc., are more concerned with, they really are much less significant for the general public to know than the points above. Sadly, documentary companies and the like keep on forgetting that, and keep on forgetting that a lot of the public does not know the above points.
Really, in the big picture, the distinction between dinosaurs, pterosaurs, and crurotarsans are trivialities compared to a basic understanding that the fossil record is our document of Life’s history and Earth’s changes.
Summarizing the key points of the history of life over nearly 4 billion years of evolutionary history is a big task. After all, there is a tendency to focus on the spectacular and sensationalized rather than the ordinary and humdrum. As Stephen Jay Gould and others often remarked, from a purely objective external standpoint we have always lived in the Age of Bacteria, and the changing panoply of animals and plants during the last half-billion years have only been superficial changes.
But the question wasn’t “what should a dispassionate outsider regard as the modal aspect of the History of Life?”; it was “What should everyone know about paleontology?” Since we are terrestrial mammals of the latest Cenozoic, we have a natural interest in events on the land and during the most recent parts of Earth History. That is a fair bias: it does focus on who WE are and where WE come from.

That said, here is a list of key concepts in the history of life. Other researchers might pick other moments, and not include some that I have here. Still, I believe most such lists would have many of the same key points within them.

  • Life first developed in the seas, and for nearly all of its history was confined there.
  • For most of Life’s history, organisms were single-celled only. (And today, most of the diversity remains single-celled).
  • The evolution of photosynthesis was a critical event in the history of Earth and Life; living things were able to affect the planet and its chemistry on a global scale.
  • Multicellular life evolved independently several times.
  • Early animals were all marine forms.
  • The major groups of animals diverged from each other before they had the ability to make complex hard parts.
  • About 540 million years ago, the ability to make hard parts became possible across a wide swath of the animal tree of life, and a much better fossil record happened.
  • Plants colonized land in a series of stages and adaptations. This transformed the surface of the land, and allowed for animals of various groups to follow afterwards.
  • For the first 100 million years or so of skeletonized animals, our own group (the vertebrates) were relatively rare and primarily suspension feeders. The evolution of jaws allowed our group to greatly diversify, and from that point onward vertebrates of some form or other have remained apex predators in most marine environments.
  • Complex forests of plants (mostly related to small swampland plants of today’s world) covered wide regions of the lowlands of the Carboniferous.
  • Burial of this vegetation before it could decay led to the formation of much of the coal that powered the Industrial Revolution and continues to power the modern world.
  • While most of the coal swamp plants required a moist ground surface on which to propagate, one branch evolved a method of reproduction using a seed. This adaptation allowed them to colonize the interiors, and seed plants have long since become the dominant form of land plant.
  • In the coal swamps, one group of arthropods (the insects) evolved the ability to fly. From this point onward insects were to be among the most common and diverse land animals.
  • Early terrestrial vertebrates were often competent at moving around on land as adults, but typically had to go back to the water in order to reproduce. In the coal swamps one branch of these animals evolved a specialized egg that allowed them to reproduce on land, and thus avoid this “tadpole” stage.
  • These new terrestrial vertebrates—the amniotes—diversified into many forms. Some included the ancestors of modern mammals; others the ancestors of today’s reptiles (including birds).
  • A tremendous extinction event, the largest in the age of animals, devastated the world about 252 million years ago. Caused by the effects and side-effects of tremendous volcanoes, it radically altered the composition of both marine and terrestrial communities.
  • In the time after this Permo-Triassic extinction, reptiles (and especially a branch that includes the ancestors of crocodilians and dinosaurs) diversified and became ecologically dominant in most medium- to large-sized niches.
  • During the Triassic many of the distinctive lineages of the modern terrestrial world (including turtles, mammals, crocodile-like forms, lizard-like forms, etc.) appeared. Other groups that would be very important in the Mesozoic but would later disappear (such as pterosaurs and (in the seas) ichthyosaurs and plesiosaurs) evolved at this time.
  • Dinosaurs were initially a minor component of these Triassic communities. Only the tall, long-necked sauropodomorphs were ecologically diverse during this time among the various dinosaur branches. However, a mass extinction event at the end of the Triassic (essentially the Permo-Triassic extinction in miniature) allowed for the dinosaurs to diversify as their competitors had vanished.
  • During the Jurassic, dinosaurs diversified. Some grew to tremendous size; some evolved spectacular armor; some become the largest carnivorous land animals the world had seen by this point. Among smaller carnivorous dinosaurs, an insulating covering of feathers had evolved to cover the body (possibly from a more ancient form shared by all dinosaurs). Among the feathered dinosaurs were the ancestors of the birds.
  • Other terrestrial groups such as pterosaurs, crocodile-ancestors, mammals, and insects continued to diversify into new habits.
  • During the Jurassic and (especially) the Cretaceous, a major transformation of marine life occurred. Green-algae phytoplankton were displaced by red-algae phytoplankton (which continue to dominate modern marine ecosystems). A wide variety of new predators—advanced sharks and rays, teleost fish, predatory snails, crustaceans with powerful claws, specialized echinoids, etc.—appeared, and the sessile surface-dwelling suspension feeders that dominated the shallow marine communities since the Ordovician became far rarer. Instead, more mobile, swimming, or burrowing forms became more common.
  • During the Cretaceous one group of land-plants evolved flowers and fruit and thus tied their reproduction very closely with animals. Although not immediately ecologically dominant, this type of plants would eventually come to be the major land plant group.
  • The impact of a giant asteroid—coupled with other major on-going environmental changes—brought an end to the Mesozoic. Most large-bodied groups on land and sea, and many smaller bodied forms, disappeared. The only surviving dinosaurs were toothless birds.
  • The beginning of the Cenozoic saw the establishment of mammals as the dominant group of large-bodied terrestrial vertebrates. Early on mammals colonized both the sea and the air as well.
  • During its beginning the Cenozoic world was warm and wet, much like the Cretaceous. However, a number of changes of the position of the continents and the rise of mountain ranges caused the climates to cool and dry.
  • As the world cooled and dried, great grasslands developed (first in South America, and later nearly all other continents).
  • Various groups of animals adapted to the new grassland conditions. Herbivorous mammals became swift runners with deep-crowned teeth, often living in herds for protection. Mammalian predators became swifter as well, some becoming pack hunters.
  • Other new plant communities evolved, and new animal communities which inhabited them. The rise of modern meadows (dominated by daisy-related plants and grasses) saw the diversification of mouse-and-rat type rodents, many frogs and toads, advanced snakes, songbirds, etc.
  • A group of arboreal mammals with very big brains, complex social communities, and gripping hands—the primates—produced many forms. In Africa one branch of these evolved to live at mixed forest-grassland margins, and from this branch evolved some who became fully upright and moved out into the grasslands.
  • This group of primates retained and advanced the ability to use stone tools that its forest-dwelling ancestors already had. Many branches evolved, and some developed even larger brains and more complex tools. It is from among these that the ancestors of modern humans and other close relatives evolved, and eventually spread out from Africa to other regions of the planet.
  • About 2.6 million years ago a number of factors led to ice age conditions, where glaciers advanced and retreated. Various groups of animals evolved adaptations for these new cold climates.
  • The early humans managed to colonize much of the planet; shortly after their arrival into new worlds, nearly all the large-bodied native species disappeared.
  • At some point before the common ancestor of all modern humans spread across the planet, the ability to have very complex symbolic language evolved. This led to many, many technological and cultural diversifications which changed much faster than the biology of the humans themselves.
  • In western Asia and northern Africa (and eventually in other regions), modern humans developed techniques to grow food under controlled circumstances, leading to true agriculture. (Other cultures are known to have independently evolved proto-agricultural techniques).
  • This Neolithic revolution allowed for the development of more settled communities, specialization of individual skills within a community (including soldiers, metallurgists, potters, priests, rulers, and with the rise of writing, scribes).
  • From this point we begin to get a written record, and so the historians can take up the story…

This list is obviously not comprehensive, and there are many elements that I had to ignore to keep it relatively short. Still, I hope this overview helps put where we as a species fit into the larger perspective of Life’s long voyage, a voyage that could only have been traced by the study of fossils.

By far truly awesome and a big thank you to Dr. Holtz for making this awesome post to help people out there.

Where we find news…

The previous post addressed (very briefly) how Coranto was used to post news. This post is basically where we go for news.

We have two types of websites we visit daily for news. Firstly; film websites. We are a Jurassic Park website, after all. We have to be on the ball for breaking news. My personal recommendations for the latest news in Hollywood, JP or otherwise includes www.ropeofsilicon.com and www.aintitcool.com. Of course, we use a lot more than two websites for this. We search at least fourteen websites about news information. DVD/BluRay releases, and so on.

The second type of website we use are scientific websites. These range from National Geographic, to Nature, to even regular news such as the BBC. We try to cover paleontological finds (Generally dinosaurs, of course) to provide our more scientific curious fans with a steady stream of information. As the world of dinosaurs is rapidly changing, we have to keep on top of this. It allows us to keep our users in touch with the reality aspect!

Lastly… arguably our most useful source if news is from within the community. We’ve had a few stories recently uncovered by fans not working on the staff who have provided us with the scoop to put on the front page. The help from the community is undoubtedly a great asset for our website, however we’re not out of a job…

yet. If you have something newsworthy to post; please post it so it can make the site page!

How we post news: Coranto

Coranto is the tool used to post up news by the Jurassic Park Legacy staff. (http://www.coranto.org/) We use it in combination with the HTML language, which allows fancy graphics, bold, italicized, and underlined fonts for the eye-catching effect. These allow us to deliver news and emphasize certain points.
Formatting is done through various HTML codes which are entered into a “post”. These HTML codes are added similarly to how parenthesi and quotation marks are applied. However, we call these “tags”. Tags can do various things such as shrinking images down (“thumbnails”), marqueeing (moving) text, or centering text. For Jurassic Park Legacy, and other websites, however, a key element in the web journalist’s weapon is in the use of bold, italics, underlining, and colors. “Fancy fonts”.

Why the fancy fonts? Why the interesting colors? Well, basically its a bit of psychology. See what I did there? The use of bold and italicization is to draw the attention of the reader to specific words through emphasis. The eye naturally is drawn to these different words because they stand out from the crowd of dull 12 Times New Roman. This is a trick of advertising and journalism, particularly web journalism and advertising where you might not be able to use colorful font, or pictures. Naturally the strength of this effect can be lost when overused! Nobody wants to read something completely in bold. It hurts the eyes and it abuses the effect. Likewise, bolding every other line looks awful. Roadsigns DONT APPEAR IN ALL CAPS BOLD unless they’re warnings, and even then, notice that they don’t retain that format for the entire sign?

Its to keep the eye fixed on the important terms. That is why we recommend, and try to use these unique formats to their proper use and nothing more. We don’t want a blind audience, but we do want to hammer home our points. AND THIS IS REALLY ANNOYING!